

No. 05.23/10.4.1 P 1/2

PILLAR FIRE HYDRANT WITH FRACTURE SYSTEM type LNH2

<Two in one = hydrant + isolating pre-valve>

Srbija - 26000 PANČEVO, Savska 12 - 14. Tel. +381 13 346226 Tel./Fax +381 13 346042 www.tecoop.co.rs / tecoopeng@mts.rs

PILLAR FIRE HYDRANT WITH FRACTURE SYSTEM type LNH2

<Two in one = hydrant + isolating pre-valve>

<Double reliability = use even when main valve is defective>

Basic technical characteristics:

<high flow: Kv=265 m³/h>

* Purpose: Taking water from underground pipelines for fire fighting and communal needs

* flow: $\overline{Kv} = 265 \text{m}^3/\text{h}$, for Di=2x65

* momenat of activation Mot: max. 55Nm, (Class 1)

* fracture force F=1350 daN

* foundation

* weight $\sim (57 \div 94)$ daN for Hi $(1350 \div 1850)$ mm

* materials:

- hydrant bodynodular cast / stainless steel

- obturator seatbrass

- outlet couplings.....aluminium

- spindle, and obturator seat.....stainless steel

- sealants.....polypropylene/elastomers

(obligation under the standard) 4.1

Advantages:

- * Isolation pre-valve (2) inside the hydrant, automatic, self-blocking, which enables:
 - use of the hydrant and in case the main valve (3) is broken,
 - that the other hydrants remain in operation even when the main valve seal is replaced
 - to omit a separate isolation valve in front of the hydrant,
 - lower cost of construction and maintenance of the hydrant network.
- * High flow; $Kv = 265 \text{ m}^3/\text{h}$, for Di = 2x65
- * In case of breakage due to force F: the hydrant remains closed, and the part of the hydrant below the breakage point remains undamaged,
- Replacing the main valve seal: without digging up the ground and without disassembling the body,
- * The possibility of blocking (6) unauthorized activation
- * The main valve seal is conical, self-flushing = dirt retention prevented = longer service life of the seal,
- * Great strength of the obturator and the body of the hydrant, MsT > 250 Nm,
- * Easy activation: Class 1, MOT < 55 Nm (max. allowed 130 Nm; Class 3),
- * Quick activation: 1 turn until water appears, 10 turns until maximum flow (max. 15 turns allowed),
- * High reliability of the drainage system = two outlet openings, and self-flushing drainage valve
- * The possibility (6) of easy control of the correctness of closing and draining.
- * Great closing reliability; impermeability of the shutter even after 1000 activations,
- * The amount of residual water in the hydrant body, < 80 cm³ (max.allowed 150 cm³),
- * Quick drainage, ≤7 min (max. allowed 10 min/m),
- * Easy replacement of main valve seat (3) and pilot valve seat (2),
- * Drainage valve (9.1) repair; from the outside, partial excavation, and without dismantling the hydrant body.(4)

Documents with the delivery of hydrant:

* Declaration of Performance, or Certificate of Constancy of Performance

* Instruction for safety work (installation, handling, inspection, maintenance, guarantee)

$Q[m^3/h]$ Di=2x65Kv=265Kv=140 $\Delta p(=p_u-p_i)$ [bar]

Flow of hydrant:

 $Q = K_v \times (1000\Delta p / \rho)^{1/2}$ - flow...... Q [m³/h] - flow coefficient..... K_v [m³/h] - pressure difference..... Δp [bar]

- water density...... ρ [kg/m³]